Low-dimensional Linearized Models for Systems with Periodic Orbits, with Application to the Ginzburg-Landau Equation

نویسندگان

  • Zhanhua Ma
  • Clarence W. Rowley
چکیده

We introduce a general procedure for obtaining a low-dimensional linear time-periodic model from a very high-dimensional nonlinear system that has an asymptotically stable periodic orbit. Our goal is to develop models that are suitable for designing feedback controllers for fluids systems with periodic orbits, such as periodically shedding wakes, or flow control problems where periodic actuation is introduced. In our method, we first linearize the nonlinear system about its asymptotically stable periodic orbit. We then compute a projection to project out the one-dimensional neutrally stable eigenspace appearing in the linear model corresponding to perturbations along the direction of the periodic orbit. Finally, we apply the method of snapshot-based balanced truncation for the high-dimensional linear periodic system to obtain a reduced-order model. We illustrate the method by developing reduced-order models for the complex Ginzburg-Landau equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Relative Periodic Solutions of the Complex Ginzburg-Landau Equation

A method of finding relative periodic orbits for differential equations with continuous symmetries is described and its utility demonstrated by computing relative periodic solutions for the one-dimensional complex Ginzburg-Landau equation (CGLE) with periodic boundary conditions. A relative periodic solution is a solution that is periodic in time, up to a transformation by an element of the equ...

متن کامل

On the Complex Ginzburg–landau Equation with a Delayed Feedback

We show how to stabilize the uniform oscillations of the complex Ginzburg–Landau equation with periodic boundary conditions by means of some global delayed feedback. The proof is based on an abstract pseudo-linearization principle and a careful study of the spectrum of the linearized operator.

متن کامل

Bifurcating Vortex Solutions of the Complex Ginzburg-landau Equation

It is shown that the complex Ginzburg-Landau (CGL) equation on the real line admits nontrivial 2-periodic vortex solutions that have 2n simple zeros (\vortices") per period. The vortex solutions bifurcate from the trivial solution and inherit their zeros from the solution of the linearized equation. This result rules out the possibility that the vortices are determining nodes for vortex solutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009